A straightforward numerical-graphical method is applied to achieve a flat fission power density (FPD) in a catalyzed deuterium-deuterium fusion-driven hybrid blanket by using a mixed fuel made of a nuclear waste actinide (244CmCO2) and natural UO2 with variable fractions of fuel components in the radial direction. The FPD could be kept quasi-constant over a relatively long plant lifetime. The peak-to-average FPD increases from 1.071 at start-up to ∼ 1.074 after 18 months’ operation. The plant availability factor is 60% under a first-wall fusion neutron flux load of 1014 x 2.45- and 1014 x 14.1-MeV neutron/cm2.s, corresponding to ∼2.64 MW/m2. This eliminates the fuel management requirements for at least 18 months of plant operation. The investigated blanket breeds high-quality nuclear fuel (239Pu and 245Cm) and also produces electricity. The overall blanket multiplication factor M increases from 9.4 to only 9.8 in 18 months. This allows an optimal exploitation of the nonnuclear part of the power plant.