ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Canada begins regulatory approval process for spent fuel repository
Canada has formally initiated the regulatory process of licensing its proposed deep geological repository for spent nuclear fuel, with the country’s Nuclear Waste Management Organization (NWMO) announcing that it has submitted an initial project description to the Canadian government.
According to the NWMO, the initial project description is a foundational document, detailing the repository’s purpose, need, and expected benefits and explaining how the project will be implemented. It also provides a preliminary assessment of potential impacts and describes measures to avoid or mitigate them. The NWMO is the not-for-profit organization responsible for managing Canada’s nuclear waste.
Akio Yamamoto
Nuclear Technology | Volume 144 | Number 1 | October 2003 | Pages 63-75
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT03-A3429
Articles are hosted by Taylor and Francis Online.
In this paper, neural networks are used to predict core characteristics, and the predicted results are used to screen poor loading patterns in order to improve optimization efficiency. The radial peaking factor, cycle length, and maximum burnup through the cycle depletion calculations were evaluated by the neural network, and these core characteristics were used for screening. The screened loading patterns were evaluated by the core calculation code as ordinary in-core optimizations. The calculation results of the test problem indicated that the loading pattern screening using the neural network effectively improves the optimization results. Since the computation time for a cycle depletion calculation with the neural network is quite short, the computation load for the screening is negligible. Since the neural network is periodically retrained using the latest evaluation results of the core calculation code, its prediction accuracy is continuously improved during the optimization. The typical prediction accuracies of the radial peaking factor, cycle length, and maximum burnup in the latter part of the optimizations were 3 to 4%, 0.01 to 0.02 GWd/t, and 0.2 GWd/t, respectively, in the test problem. These accuracies are satisfactory for loading pattern screening.