During anodic dissolution of irradiated binary Experimental Breeder Reactor-II fuel, a portion of the electrorefined uranium collects in the underlying cadmium pool. It is periodically recovered by setting up a cell configuration in which the pool is made the anode and uranium is electrodeposited on a solid cathode mandrel. A theoretical model is used to determine the current structure of the liquid cadmium anode. The model is validated by comparing against the measured composition of the cathode deposits. Multinodal simulations are conducted to explain the bell shape of deposits observed with this mode of electrotransport. The simulations also determine the dependence of collection efficiency on the electrical charge passed that is functionally consistent with the experimental data. Finally, a simplified operating map of the electrorefiner is presented that can be used to determine the conditions for growing cathode deposits of target composition.