ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Darryl D. Siemer
Nuclear Technology | Volume 185 | Number 1 | January 2014 | Pages 100-108
Technical Note | Reprocessing | doi.org/10.13182/NT12-164
Articles are hosted by Taylor and Francis Online.
The fuel reprocessing (recycling) system invoked by the developers of Oak Ridge National Laboratory's molten salt–based breeder (of 233U from 232Th) reactor (MSBR) would generate high-level reprocessing waste consisting of ∼3 mol % fission product fluoride salts in a matrix consisting primarily of sodium and potassium fluoride salts. This technical note discusses a management scenario for such waste that invokes the following steps: (a) mixing of the waste salt with dilute nitric acid with a pug mill; (b) volatilization/separation of the bulk of the fluoride as hydrofluoric acid (HF) with a wiped film evaporator; (c) vitrification of the thus “converted” (to nitrate) salt waste to an iron phosphate glass waste form with a stirred melter; (d) reduction of the nitric acid/NOx in the combined off-gas to elemental nitrogen with hot charcoal; (e) condensation of the water and HF in the reduced off-gas; (f) neutralization of that solution with an alkali (sodium and/or lithium and/or potassium) hydroxide; (g) drying of that solution to produce the fluoride salts utilized by the process; and finally, (h) off-gas disposal after treatment implemented with a condenser, wet electrostatic precipitator, catalytic converter, and high-efficiency particulate air filters. This scenario's advantages relative to those that invoke the preparation of a synthetic fluoride mineral (cation-substituted fluorapatite) waste form include much higher effective waste loading, lower cost, and a product (glass) more consistent with stakeholder expectations.