ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Wadim Jaeger, Victor Hugo Sanchez Espinoza
Nuclear Technology | Volume 184 | Number 3 | December 2013 | Pages 333-350
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT184-333
Articles are hosted by Taylor and Francis Online.
The validation of computer codes related to the thermal-hydraulic analyses of nuclear reactors is a challenging undertaking because of the complexity of the phenomena involved, e.g., boiling, condensation, and mixing. In the frame of the ongoing validation of the best-estimate system code TRACE, the present paper focuses on the phenomena taking place during the quenching of the hot surface of the fuel rod simulator with cold water. Since TRACE describes the physical phenomena with empirical correlations derived from experiments, it is necessary to ensure that these correlations are valid if applied to similar experiments but different boundary conditions. By means of an uncertainty and sensitivity study, the influence of the empirical models and their associated uncertainties on selected output parameters is quantified and the parameters with the largest sensitivity are evaluated.