ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Alexander Glaser, Laura Berzak Hopkins, M. V. Ramana
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 121-129
Technical Paper | Proliferation Issues/Nuclear Safeguards | doi.org/10.13182/NT13-A19873
Articles are hosted by Taylor and Francis Online.
Small modular reactors (SMRs) with power levels much smaller than the currently standard 1000- to 1600-MW(electric) reactor designs have been proposed as a potential game changer for the future of nuclear power. We explore the contours of an expanded nuclear power generation capacity and the associated fuel cycles. To lay out a possible geographical distribution of nuclear capacity, we use results from an integrated assessment model used in energy and climate policy analysis. A wide variety of SMR designs with distinct characteristics are under development. To explore the impacts of these different designs, we have developed notional models for two leading SMR types and analyzed their resource requirements using results from neutronics calculations. Finally, we offer an initial assessment of the proliferation risks associated with these notional SMR designs compared to standard light water reactors (LWRs) using a Markov model. The analysis indicates that SMRs based on LWR technology (integral pressurized water reactors) have higher resource requirements as compared to gigawatt-scale reactors, while SMRs with long-lived cores have much lower resource requirements but a higher fissile content in the spent fuel they generate. These characteristics translate into increased proliferation risks unless they are offset by reactor design features or dedicated safeguards approaches.