ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Former NASA official discusses the need for nuclear power in space
A recent episode of the podcast Space Minds features a discussion about the uses of nuclear power in space with Bhavya Lal, former associate administrator for technology, policy, and strategy at NASA. Lal, who has master’s degrees in nuclear engineering and in technology and policy from the Massachusetts Institute of Technology, is currently a professor at the RAND School of Public Policy and a strategy consultant for Idaho National Laboratory.
Youho Lee, Thomas J. McKrell, Chao Yue, Mujid S. Kazimi
Nuclear Technology | Volume 183 | Number 2 | August 2013 | Pages 210-227
Technical Paper | Fuel Cycle and Management/Materials for Nuclear Systems | doi.org/10.13182/NT12-122
Articles are hosted by Taylor and Francis Online.
An experimental assessment was conducted of the silicon carbide (SiC) cladding oxidation rate in steam under conditions that are representative of loss-of-coolant accidents in light water reactors (LWRs). SiC oxidation tests were performed with monolithic alpha-phase tubular samples at atmospheric pressure for steam temperatures of 1140°C and 1500°C and a Reynolds number range of 40 to 330. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO2 volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate and temperature. Over the range of test conditions, SiC oxidation rates were shown to be about three orders of magnitude lower than the oxidation rates of Zircaloy-4. This underlines a weaker interplay between oxidation and mechanical property degradation in comparison with Zircaloy. SiC volatilization correlations for developing laminar flow in a vertical channel were formulated for LWR accident modeling.