ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
John D. Stempien, David M. Carpenter, Gordon Kohse, Mujid S. Kazimi
Nuclear Technology | Volume 183 | Number 1 | July 2013 | Pages 13-29
Technical Paper | Fuel Cycle and Management/Materials for Nuclear Systems | doi.org/10.13182/NT12-86
Articles are hosted by Taylor and Francis Online.
Silicon carbide possesses a high melting point, low chemical activity, no appreciable creep at high temperatures, and a low neutron absorption cross section, making it an attractive material to investigate for use as fuel cladding in light water reactors. The cladding design investigated herein consists of three layers: an inner monolith of SiC, a central composite layer of SiC fibers infiltrated with SiC, and an outer SiC coating to protect against corrosion. The inner monolith provides strength and hermeticity for the tube, and the composite layer adds strength to the monolith while providing a pseudo-ductile failure mode in the hoop direction. The tube may be sealed by bonding SiC end caps to the SiC tube. A number of samples were irradiated in a test loop simulating pressurized water reactor coolant and neutronic conditions at the Massachusetts Institute of Technology research reactor. Postirradiation hoop stress testing via internal pressurization revealed 10% to 60% strength reduction due to physical properties mismatches between the three layers and corrosion. Weight loss measurements indicated that some irradiation-assisted corrosion occurred. Scanning electron microscope analysis allowed determination of the fracture mechanisms for specimens ruptured during hoop testing. The thermal diffusivities of the as-fabricated three-layer tube samples were measured to be roughly three times lower than those of the as-fabricated monolith layer. With irradiation, the thermal diffusivities decreased by factors of 14 and 8 for the monolith and three-layered samples, respectively. This change may be attributed to radiation damage and the formation of a silica layer on the sample surface. Anisotropic swelling of the bonded -SiC blocks was sufficient to fail five of the six bond test specimens after a 1.5-month irradiation. Two of each of the calcium aluminate and Ti foil bonded samples failed. One of two TiC/SiC bond samples survived.