ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
G. Stange, H. Yeom, B. Semerau, K. Sridharan, M. Corradini
Nuclear Technology | Volume 182 | Number 3 | June 2013 | Pages 286-301
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-A16980
Articles are hosted by Taylor and Francis Online.
Pool boiling critical heat flux (CHF) measurements have been performed on stainless steel and zirconium wires in nanofluids consisting of oxide nanoparticles (7 to 250 nm) dispersed in water as well as in high-purity water after coating these wires with a variety of materials and methods. For the nanofluids study, nanoparticles of titania, alumina, zirconia, and yttria-stabilized zirconia (YSZ) were investigated for various sizes and concentrations. Results showed improvements in CHF in the range of 50% to 100%, with titania and zirconia exhibiting the highest and the lowest levels of improvement, respectively. Wires were coated separately with the same oxide nanoparticle materials, as well as pure titanium nanoparticles, using the electrophoretic deposition (EPD) technique and by nanofluid boiling. EPD coatings yielded superior and more consistent improvements in CHF values in clean water, suggesting that this could be a more practical approach than using nanofluids. Coating uniformity plays an important role in dictating the levels of CHF enhancement. In all cases, titania provided for high levels of improvement, while YSZ showed similarly high levels of improvement in some cases. Pure titanium coatings exhibited lower levels of improvement, indicating qualitatively that the lower wettability on metallic substrates (as compared to oxides) may play a role in dictating CHF improvements. Titanium, however, exhibits better adhesion to metallic substrates than do oxides, which is an important property for applications in a reactor environment. Given this, the improvements in CHF achieved by titanium coatings were sufficient to justify further study.