ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Harn Chyi Lim, Karin Rudman, Kapil Krishnan, Robert McDonald, Patricia Dickerson, Darrin Byler, Pedro Peralta, Chris Stanek, Kenneth McClellan
Nuclear Technology | Volume 182 | Number 2 | May 2013 | Pages 155-163
Technical Paper | Special Issue on the Symposium on Radiation Effects in Ceramic Oxide and Novel LWR Fuels / Fuel Cycle and Management | doi.org/10.13182/NT13-A16427
Articles are hosted by Taylor and Francis Online.
Transport of fission products (FPs) inside fuel pellets is an important mechanism that affects microstructure evolution as well as fuel performance. To study this phenomenon for low fuel burnups, when solid-state diffusion is likely to be the controlling mechanism that sets the stage for subsequent phenomena, e.g., fission gas bubble formation and linkage, we created a three-dimensional (3-D) finite element model based on the real microstructure of a depleted UO2 sample. The model couples grain bulk, grain boundary (GB), and triple junction (TJ) diffusion by using 3-D elements for grain bulks, two-dimensional elements for GBs, and one-dimensional elements for TJs. Grain boundary percolation theory is applied in one case study, and the result shows that the presence of high-diffusivity TJs reduces the effect of GB percolation. The model is also used with mass generation from grain bulks, and it is found that localized regions with a high concentration of FPs can form in the presence of a dominant GB percolation path. The work introduces an approach to model diffusion through GBs and TJs at a fair computational cost that can be applied to study the effects of microstructure on FP transport.