ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Karsten Fischer
Nuclear Technology | Volume 112 | Number 1 | October 1995 | Pages 58-62
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT95-A15851
Articles are hosted by Taylor and Francis Online.
The advantage of passive catalytic modules for hydrogen mitigation during core-melt accidents, as compared with active devices like forced-flow recombiners or ignitors, is given by the higher reliability of operation and the elimination of potentially violent combustion events. An important step in the qualification of a passive catalytic module system is the determination of the total required capacity and its distribution at various locations in the containment. Experiments and analytic modeling work were performed to qualify the installation of a system of catalytic modules for a large dry pressurized water reactor (PWR) containment. The operational capacity of a prototype catalytic module was determined experimentally, and a corresponding model correlation was developed and integrated into the GOTHIC containment code. This modified code was validated against experimental data. As an application, predictions of the effects, resulting from backfitting a large, dry PWR containment with 50 catalytic modules, were done using the modified code. The catalytic modules keep the hydrogen concentrations below a level of 10% where violent deflagrations could be expected. Local higher concentrations near the release location are inert due to associated low oxygen and high steam concentrations. A proper distribution of the modules in the containment guarantees full mixing of the atmosphere due to natural convective currents.