ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Elementl and Google agree on site-first approach to three nuclear projects
Elementl Power Inc. is a “technology agnostic” nuclear project developer looking to bring more than 10 gigawatts of new nuclear power on line in the United States by 2035, and Google wants to see more baseload nuclear power supplying its data centers. The two companies announced May 7 that they have signed a strategic agreement to “pre-position” three project sites for advanced nuclear energy.
Dean Dobranich, Mohamed S. El-Genk
Nuclear Technology | Volume 94 | Number 3 | June 1991 | Pages 372-382
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT91-A15815
Articles are hosted by Taylor and Francis Online.
Particle-bed reactors have been proposed to provide high-temperature, low-mass power sources for space-based operation. A computer program was prepared to simulate the thermal and mechanical response of a multilayered fuel particle operating in such a reactor. Issues of concern include temperature gradient and interference thermal stresses, along with the plastic and creep deformations associated with the high temperature of operation. The results of the computer simulations indicate that the interference thermal stress is much larger than the temperature gradient stress and the external pressure stress, and that permanent strain formation cannot be avoided for particles operating at temperatures greater than ∼2300 K. The results also reveal some interesting aspects unique to multilayered fuel particle performance. Two such aspects include (a) the interaction between interference thermal stress and high-temperature creep and (b) the effect of power ramp time on the formation of time-dependent plastic strains.