ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Paul Day, Mark Cutkosky, Anastasia McLaughlin
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 450-455
Technical Note | Special Issue on the Initial Release of MCNP6 / Radioisotopes | doi.org/10.13182/NT12-A15356
Articles are hosted by Taylor and Francis Online.
Irradiation of polymer-based directional dry adhesives with gamma photons has been performed. This irradiation is commensurate with the radiation that an adhesive sample would be exposed to if deployed in a nuclear glove box or other high-radiation environment. Before and after irradiation, samples were tested using a three-axis adhesive testing stage and were analyzed via a scanning electron microscope and a water droplet contact angle analyzer. At doses in excess of 270 kGy, the adhesive performance began to deteriorate, continuing to an overall performance reduction of 55% at a dose of [approximately]500 kGy. Significant changes in the surface energy of the bulk polymer are also indicated by changes in water droplet contact angles, contributing to the adhesion performance loss. Such analyses allow for quantitative statements to be made about the expected performance of these adhesives when deployed in high-radiation environments.