ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Jiyun Zhao, C. P. Tso, K. J. Tseng
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 78-88
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A14520
Articles are hosted by Taylor and Francis Online.
The effects of two-phase-flow modeling on nuclear reactor single-channel stability analysis are investigated with four two-phase-flow models, namely, the homogeneous-equilibrium model, the homogeneous-nonequilibrium model, the nonhomogeneous-equilibrium model, and the nonhomogeneous-nonequilibrium model. The models are applied to hot-channel analyses of a proposed typical supercritical-water-cooled-reactor (SCWR) design. The neutral stability boundaries derived by using the four models are compared and plotted on the traditional subcooling number versus phase change number plane. To ensure proper development of the models, they are benchmarked to the experimental data. It is found that the homogeneous models predict more conservative stability boundaries than the nonhomogeneous models and that the differences of the stability boundaries predicted by all four two-phase-flow models are reduced under higher-pressure conditions.