ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Robert Petroski, Benoit Forget, Charles Forsberg
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 28-45
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A14517
Articles are hosted by Taylor and Francis Online.
A fuel cycle option is evaluated in which fuel bred in breed-and-burn (B&B) reactors is used to start up additional B&B reactors, with the fuel being recycled using limited-separations processes instead of full actinide reprocessing. This fuel cycle aims to minimize processing requirements and proliferation risk while still being able to achieve exponential growth and high uranium utilization. The neutron excess concept is applied to compute the starting fuel requirements of new B&B reactors, allowing fleet doubling times to be estimated. A simple analytic expression for doubling time is derived, which is applied to example B&B reactors using a hypothetical core composition. It is found that larger reactors are able to achieve shorter doubling times because of their smaller starter fuel requirements per unit power. Several variant fuel cycle configurations are examined, and their doubling times are computed.