ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
My story: Stanley Levinson—ANS member since 1983
Levinson early in his career and today.
As a member of the American Nuclear Society, I have been to many conferences. The International Conference on Probabilistic Safety Assessment and Analysis (PSA ’25), embedded in ANS Annual Meeting in Chicago in June, held special significance for me with the PSA ’25 opening plenary session recognizing the 50th anniversary of the publication of WASH-1400, which helped define my career. Reflecting on that milestone sent me back to 1975, when I was just an undergraduate student studying nuclear engineering at Rensselaer Polytechnic Institute (RPI) in Troy, N.Y., focusing on my mechanics, fluids, and thermodynamic classes as well as my first set of nuclear engineering classes. At that time—and many times since—the question “Why nuclear engineering?” was raised.
Steven E. Skutnik, Man-Sung Yim
Nuclear Technology | Volume 179 | Number 3 | September 2012 | Pages 374-381
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A14169
Articles are hosted by Taylor and Francis Online.
The effect of simplifications in nuclear fuel depletion analysis as well as the effect of cross-section uncertainties were evaluated as to their impact upon material attractiveness for weapons diversion purposes. The effect of simplified depletion models for material attractiveness evaluation was evaluated through a comparison of pressurized water reactor fuel for several benchmark cases, using experimentally measured values along with a two-dimensional lattice physics model (TRITON) and a point depletion model (ORIGEN-S). Simplifications such as the use of the ORIGEN-S depletion libraries and assumptions of homogeneous core enrichment were found to have a negligible impact on material attractiveness evaluation, particularly relative to uncertainties in experimental measurements; additionally, simplified irradiation power histories do not introduce unacceptable errors into the attractiveness evaluation. Finally, the overall sensitivity of material attractiveness and associated uncertainty was found to be greater for transuranic mixtures compared to plutonium as a function of both burnup and decay time; however, associated uncertainties are generally small and not prohibitive to material attractiveness discrimination. As a result, the use of simplified depletion models such as ORIGEN-S appears to be well justified for use in material attractiveness evaluation for proliferation resistance studies.