ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Raphael Craplet, Joonhong Ahn
Nuclear Technology | Volume 177 | Number 3 | March 2012 | Pages 314-335
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A13478
Articles are hosted by Taylor and Francis Online.
A mathematical model for mass flow in a generic nuclear fuel cycle was developed. The model can describe various fuel cycle configurations (ranging from once-through to multiple recycling) and reactor types with several regions and batches. It can also be used as a submodel in a regional or global fuel cycle system. Recursive equations for the fuel composition at each point of the cycle were obtained. For specific simplified cases, nonrecursive and equilibrium equations were also derived for compositions, with which the waste reduction ratio was formulated as a function of the system parameters, to show usage of this model for theoretical understanding of the relationship between parameters and performances of the system. A numerical code for this mathematical model was developed. For a simplified equilibrium cycle, sensitivity and constrained optimization of the toxicity reduction ratio with respect to the system parameters were investigated by using the present model and code. It appears that the most important parameter to minimize waste toxicity is the separation efficiency at reprocessing. High fuel enrichment is beneficial because it expands the parametric space within the constraints. Also, depending on the constraints that apply, either the irradiation time or the fraction of core reprocessed at each cycle will be the second most important parameter.