ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. C. Jaboulay, S. Bourganel
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 73-82
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A13328
Articles are hosted by Taylor and Francis Online.
Decay heat measurements, called the MERCI experiment, were conducted at Commissariat à l'Energie Atomique (CEA)/Saclay to characterize accurately residual power at short cooling time and verify its prediction by decay code and nuclear data. The MOSAÏC calorimeter, developed and patented by CEA/Grenoble (DTN/SE2T), enables measurement of the decay heat released by a pressurized water reactor (PWR) fuel rod sample between 200 and 4 W within a precision of 1%. The MERCI experiment included three phases. At first, a UO2 fuel rod sample was irradiated in the CEA/Saclay experimental reactor OSIRIS. The burnup achieved at the end of irradiation was [approximately]3.5 GWd/tonne. The second phase was the transfer of the fuel rod sample from its irradiation location to a hot cell, to be inserted inside the MOSAÏC calorimeter. It took 26 min to carry out the transfer. Finally, decay heat released by the PWR sample was measured from 27 min to 42 days after shutdown. Postirradiation examinations were performed to measure concentrations of some heavy nuclei (U, Pu) and fission products (Cs, Nd). The decay heat was predicted using a calculation scheme based on the PEPIN2 depletion code, the TRIPOLI-4 Monte Carlo code, and the JEFF3.1.1 nuclear data file. The MERCI experiment analysis shows that the discrepancy between the calculated and the experimental decay heat values is included between -10% at 27 min and +6% at 12 h, 30 min after shutdown. From 4 up to 42 days of cooling time, the difference between calculation and measurement is about ±1%, i.e., experimental uncertainty. The MERCI experiment represents a significant contribution for code validation; the time range above 105 s has not been validated previously.