ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
K. Praveen, M. P. Rajiniganth, A. D. Arun, R. Ananthanarayanan, N. Malathi, P. Sahoo, N. Murali
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 127-137
Nuclear Plant Operations and Control | doi.org/10.13182/NT11-A12547
Articles are hosted by Taylor and Francis Online.
We present an unconventional but high-performance differential pressure (DP) monitoring instrument constructed using a new class of sensor, i.e., a pulsating sensor developed in-house. This instrument of unique design is of industrial grade, and it is specially made for online monitoring of pressure in the Prototype Fast Breeder Reactor (PFBR), located in Kalpakkam, India. It measures pressure in two different ranges - 0 to 25 mbars (0 to 2.5 kPa) and 0 to 60 mbars (0 to 6.0 kPa) - using two specially designed capacitance-based robust probes made of stainless steel (Type 304L). The performance of this innovative instrument using both probes was thoroughly investigated at ambient room temperature as well as at elevated temperatures (above 30°C to 60°C) in order to assess its suitability for reactor application. The precision, sensitivity, response time, and lowest detection limit of measurement using this pulsating DP monitoring instrument are <0.01 mbars (0.001 kPa), 423 Hz/mbar (4230 Hz/kPa), [approximately]5 s, and 0.07 mbars (0.007 kPa), respectively. The influence of temperature up to 60°C on the measured parameters was found to be insignificant. A calibration technique has been evaluated to calibrate these pressure sensors.