ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Zhi-Gang Zhang, Ken-Ichiro Sugiyama
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 619-627
Technical Paper | NURETH-13 Special / Thermal Hydraulics | doi.org/10.13182/NT11-A12510
Articles are hosted by Taylor and Francis Online.
To characterize the relationship between hydrodynamic and thermal effects on fragmentation of molten core structural material, which mainly includes cladding material, with the interaction of the coolant of sodium under a wide range of thermal and hydrodynamic conditions, this paper focuses on a series of fragmentation characteristics of a single molten Type 304 stainless steel droplet (5 g) with an ambient Weber number Wea from 199 to 586 and superheat conditions from 23 to 276°C, which penetrates into a sodium pool at an initial temperature from 301 to 313°C.In our experiments, fine fragmentations of single molten stainless steel droplets with high Wea were clearly observed, even under a supercooled condition that is well below its melting point of 1427°C. The dimensionless mass median diameters (Dm/D0) of molten droplets with high Wea are less than molten droplets with low Wea under the same thermal condition. When Wea is approximately >250, the hydrodynamic effect on fragmentation becomes predominant over the thermal effect under a relatively low superheat condition. For a higher Wea range, the comparisons indicate that the fragment sizes of the molten stainless steel droplet and jet have similar distributions to those of molten metallic fuel jets even with different thermophysical properties and a thousandfold mass difference, which implies the possibility that the fragment size characteristics of molten metal jets could be evaluated by the interaction of a single droplet with the sodium coolant without the consideration of dropping modes and mass.