ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
M. J. Loughlin, E. I. Polunovskiy, S. Zheng
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 271-275
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12299
Articles are hosted by Taylor and Francis Online.
The nuclear fusion devices using the principle of magnetic plasma confinement such as the ITER tokamak are going to consist of a variety of highly heterogeneous, nuclear-radiation-sensitive components. The compactness of the ITER tokamak makes it difficult to rely on large safety margins. Under these circumstances the use of reasonably heterogeneous, highly precise models for the nuclear analysis is going to be unavoidable. Techniques have been developed to create these models based as directly as possible on computer-aided design (CAD) specifications, thereby retaining fidelity and speeding up the process. Inevitably, some adaption of the CAD model is necessary as part of the conversion process.This paper describes the approach to the production of the models for nuclear analysis for ITER developed by the neutronics group in the ITER Organization. Algorithmization of the CAD-based modeling for MCNP code has been undertaken.