ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Tim D. Bohm, S. T. Jackson, M. E. Sawan, P. P. H. Wilson
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 264-270
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12298
Articles are hosted by Taylor and Francis Online.
Researchers at the University of Wisconsin-Madison Fusion Technology Institute and Argonne National Laboratories have recently developed a computer-aided-design-based Monte Carlo code (DAG-MCNP5) to perform nuclear analysis of complex three-dimensional systems such as ITER. In this work, DAG-MCNP5-calculated results will be compared to native MCNP5-calculated results and to measured results for ITER-specific benchmark experiments in order to provide additional quality assurance for DAG-MCNP.Calculated results are compared for the bulk shield mock-up and the helium-cooled pebble bed (HCPB) breeder blanket mock-up, which utilize the 14-MeV Frascati Neutron Generator facility. Neutron flux was measured at different depths in these experimental mock-ups using activation foils that cover the neutron energy range of 0 to 14 MeV. Additionally, tritium production in Li2CO3 pellets was measured in the HCPB experiment.Results of the foil activation calculations for the bulk shielding experiment and the HCPB breeder experiment show agreement within statistical uncertainty for DAG-MCNP5 and native MCNP5. Calculated results for tritium production in the HCPB mock-up also agree within statistical uncertainty for the DAG-MCNP5 and native MCNP5 calculations. Timing results showed that DAG-MCNP5 is 5.3 times slower than native MCNP5 for the bulk shield mock-up. For the HCPB mock-up, DAG-MCNP5 is 4.8 times slower than native MCNP5.It is concluded that the close agreement of calculated foil activation and tritium production between DAG-MCNP5 and native MCNP5 in these complex and ITER-relevant geometries provides additional quality assurance for the DAG-MCNP5 code and the mcnp2cad tool used in this work.