ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Joao Seco, Nick Depauw, Sylvain Danto, Harald Paganeti, Yoel Fink
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 27-31
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Biology; Radiation Used in Medicine | doi.org/10.13182/NT11-A12265
Articles are hosted by Taylor and Francis Online.
Proton radiography is an imaging technique with potential application in proton radiation therapy. The ability of a proton radiograph to differentiate anatomical features in the thoracic region, such as heart, lung, rib cage, shoulder, etc., was qualitatively investigated using Monte Carlo simulations. A patient with a stage IIIA non-small cell lung cancer tumor located in the right upper lobe and mediastinum was considered for this study. The GEANT4 Monte Carlo toolkit was used to simulate proton transport through a proton nozzle and through the lung area of the patient, registering in a phase-space file the entry and exit energy, position, and motion direction of each proton. The Monte Carlo simulation ran a total of 10 million histories with the highest deliverable energy of 235 MeV at the Francis H. Burr Proton Therapy Center. The proton radiograph was then generated independently of the Monte Carlo simulation, using a numerical algorithm to input the proton position, direction of motion, and energy kept in the entry and exit phase-space files. The proton radiograph was compared to the standard portal X-ray image for tissue and tumor contrast, and for visibility relative to the background lung tissue. The preliminary results with GEANT4 showed that the proton radiography can produce images with good spatial resolution and excellent soft tissue contrast, resulting in better tumor edge localization within a soft tissue background region such as the lung.