ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Masaumi Nakahara, Tsutomu Koizumi, Kazunori Nomura
Nuclear Technology | Volume 174 | Number 1 | April 2011 | Pages 109-118
Technical Paper | Radiochemistry | doi.org/10.13182/NT11-A11684
Articles are hosted by Taylor and Francis Online.
To elucidate various kinds of actinide element and fission product behavior, U crystallization experiments were carried out with a uranyl nitrate solution and with a solution in which irradiated fast reactor core fuel was dissolved. Insoluble residue simulating that found in actual reactor operation was not incorporated into the uranyl nitrate hexahydrate (UNH) crystal in the course of the U crystallization. However, the decontamination factors (DFs) were below 10 even when the UNH crystal was washed because the mother liquor containing the simulated insoluble residue occupied the interspaces of the agglutinated UNH crystal. In the U crystallization process, the DF of Pu was >40 when the UNH crystal was washed. But, Np was not removed from the UNH crystal because Np was oxidized to Np(VI) in the feed solution and thus was co-crystallized with U(VI). Cesium exhibited different behavior depending on whether Pu was present. Although a high DF of Cs was obtained in the case of uranyl nitrate solution without Pu, Cs was hardly separated at all from the UNH crystal formed from the dissolver solution of irradiated fast reactor core fuel. It is likely that crystals of a mixed salt of Pu and Cs, Cs2Pu(NO3)6, precipitated from the dissolver solution. Since Ba precipitated as Ba(NO3)2 during the crystallization process, its DF was low after the UNH crystal was washed. On the other hand, Am, Cm, Rb, Sr, Zr, Nb, Ru, Sb, and rare earth elements remained in the mother liquor at the time of U crystallization. Therefore, portions of these elements in the mother liquor that was attached to the surface of the UNH crystal were washed away with HNO3 solution.