ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Charles W. Solbrig, Kenneth J. Bateman
Nuclear Technology | Volume 172 | Number 2 | November 2010 | Pages 189-203
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT10-A10904
Articles are hosted by Taylor and Francis Online.
The goal of this work is to produce a ceramic waste form that permanently occludes radioactive waste. This is accomplished by absorbing radioactive salts into zeolite, mixing with glass frit, heating to a molten state at 915°C to form a sodalite glass matrix, and solidifying for long-term storage. Less long-term leaching is expected if the solidifying cooling rate does not cause cracking. In addition to thermal stress, this paper proposes a mathematical model for the stress formed during solidification, which is very large for fast cooling rates during solidification and can cause severe cracking. A solidifying glass or ceramic cylinder forms a dome on the cylinder top end. The temperature distribution during solidification causes the solidification stress and the dome resulting in an axial length deficit. The axial stress, determined by the length deficit, remains when the solid is at room temperature with the outer region in compression and the inner region in tension. Large tensions will cause cracking of the specimen. The temperature deficit, derived by dividing the length deficit by the coefficient of thermal expansion, allows solidification stress theory to be extended to the circumferential stress. This paper derives the solidification stress model, gives examples, explains how to induce beneficial stresses, and compares theory to experimental data.