ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Yung-Zun Cho, Gil-Ho Park, Han-Su Lee, In-Tae Kim, Dae-Seok Han
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 325-334
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT09-7
Articles are hosted by Taylor and Francis Online.
As an alternative to conventional Group I and II separation methods (such as adding a chemical agent and ion exchange), melt crystallization processes, zone freezing, and layer melt crystallization were tested for the separation (or concentration) of cesium and strontium fission products in a LiCl waste salt generated from an electrolytic reduction process of a spent oxide fuel. In these melt crystallization processes, impurities (CsCl and SrCl2) are concentrated in a small fraction of the LiCl salt by the solubility difference between the melt phase and the crystal phase. As experimental variables, initial molten salt temperature, crucible rising velocity in the zone freezing case, and cooling air flow rate in the layer crystallization case were used. In the zone freezing process, although the operating time is long (1.7 mm/h of crucible rising velocity) when assuming a LiCl salt reuse rate of 90 wt%, >90% separation efficiency for both CsCl and SrCl2 was shown. In the layer crystallization process, the crystal growth rate strongly affects the crystal structure and therefore the separation efficiency. At a 25 to 30 [script l]/min cooling air flow rate, 700 to 710°C initial molten salt temperature, and <5 g/min crystal growth rate, the separation efficiency of both CsCl and SrCl2 exceeded 90% by the layer crystallization process, assuming a LiCl salt reuse rate of 90 wt%.