The computer code PRAGAMAN has been developed for numerical simulation of electrotransport during molten salt electrorefining of spent metallic fuels. The code is based on the thermodynamic equilibriums among pairs of elements and their chlorides that exist at the anode-electrolyte salt and cathode-electrolyte salt interfaces. It uses nonlinear and linear equations to arrive at real solutions for all 16 possible conditions that could be envisaged with respect to the solubilities of U and Pu at the anode and cathode. It can handle the electrotransport of eight elements representing typical actinides, minor actinides, and fission products, as well as potential dependent electrotransport of U and Pu.