ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
Suddhasattwa Ghosh, B. Prabhakara Reddy, K. Nagarajan, P. R. Vasudeva Rao
Nuclear Technology | Volume 170 | Number 3 | June 2010 | Pages 430-443
Technical Paper | Reprocessing | doi.org/10.13182/NT10-A10329
Articles are hosted by Taylor and Francis Online.
The computer code PRAGAMAN has been developed for numerical simulation of electrotransport during molten salt electrorefining of spent metallic fuels. The code is based on the thermodynamic equilibriums among pairs of elements and their chlorides that exist at the anode-electrolyte salt and cathode-electrolyte salt interfaces. It uses nonlinear and linear equations to arrive at real solutions for all 16 possible conditions that could be envisaged with respect to the solubilities of U and Pu at the anode and cathode. It can handle the electrotransport of eight elements representing typical actinides, minor actinides, and fission products, as well as potential dependent electrotransport of U and Pu.