ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Aaron J. Reynolds, Todd S. Palmer
Nuclear Science and Engineering | Volume 197 | Number 1 | January 2023 | Pages 45-73
Technical Paper | doi.org/10.1080/00295639.2022.2097565
Articles are hosted by Taylor and Francis Online.
We use the deterministic neutron transport code QuasiMolto to simulate steady-state operation of the Molten Salt Reactor Experiment (MSRE). Comparisons are made to similar results from the MOST benchmark, the MOOSE-based code Moltres, and the design calculations for the MSRE. In the course of these comparisons, we calculate a value of 0.1799 for the graphite-to-fuel power density ratio, which differs significantly from that seen in other works. We also find uniform graphite heating inadequate to reproduce the characteristic graphite temperature distribution of the MSRE. Leveraging the multilevel projective methodology of QuasiMolto, the influence of transport effects on the modeled problem is found to produce average and maximum group flux variations of 2% to 5% and 30%, respectively, with a 12% variation in the reactivity loss due to delayed neutron precursor drift.