ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Weiping Deng, Yanbin Zhang, Huan Jia, Tao Wan, Weifeng Yang, Chengwen Qiang, Long Li, Fei Wang, Honglin Ge, Fei Ma, Xueying Zhang
Nuclear Science and Engineering | Volume 196 | Number 7 | July 2022 | Pages 899-909
Technical Paper | doi.org/10.1080/00295639.2022.2027177
Articles are hosted by Taylor and Francis Online.
A granular flow target coupled with a beam window was studied. The beam window isolates the accelerator from the target, making the system more secure and flexible. Preliminary analyses for the beam window and beam tube, including neutronics, thermal hydraulics, and structural mechanics were performed by Geant4 and ANSYS. The effects of geometry and coolant flow direction on the temperature field and the stress distribution of the beam window are studied. The results show that the maximum temperature can be reduced by 13% through optimization. Comparing the thermal deposition distribution of the beam tube with and without the beam window, we find that there is an extra peak due to the beam window. In addition, the effect of the cooling pattern on the temperature distribution of the beam tube is also studied. The results show that it is reasonable to arrange six U-shaped cooling channels. Detailed analyses show that the material temperature and the mechanical property of the beam window and beam tube meet the design standards, which confirm the possibility of granular flow target with a beam window for engineering application.