ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
H. Naik, R. J. Singh, W. Jang, S. P. Dange
Nuclear Science and Engineering | Volume 196 | Number 4 | April 2022 | Pages 433-454
Technical Paper | doi.org/10.1080/00295639.2021.1993425
Articles are hosted by Taylor and Francis Online.
In the thermal neutron–induced fission of 232U, cumulative and independent yields of various fission products within the mass ranges of 72 to 107 and 123 to 158 have been measured using an off-line gamma-ray spectrometric technique. The fission yields were determined relative to the yield of a monitor product 92Sr. Charge distribution correction was applied on the cumulative yields to obtain the post-neutron mass yield distribution. Mass yield distribution parameters such as full-width at tenth-maximum of light and heavy mass wings, average light mass number <AL> and heavy mass number <AH>, and average number of emitted neutrons <ν> were obtained. Data from the present and earlier work on the 232U(nth,f) reaction were compared with similar data of the 235U(nth,f) reaction. It was found that the mass chain yield distribution in the 232U(nth,f) reaction is asymmetric with two major humps as in the case of the 235U(nth,f) reaction. Besides this, in the 232U(nth,f) reaction, the mass yield distribution shows a small third hump for the symmetric fission products. It was also found that the standard II asymmetric mode of fission is favorable in the 232U(nth,f) reaction whereas the standard I asymmetric mode of fission is favorable in the 235U(nth,f) reaction.