ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
T. A. Wareing, W. F. Walters, J. E. Morel
Nuclear Science and Engineering | Volume 118 | Number 2 | October 1994 | Pages 122-126
Technical Note | doi.org/10.13182/NSE94-A28541
Articles are hosted by Taylor and Francis Online.
Recently, a new diffusion synthetic acceleration scheme was developed for solving the two-dimensional Sn equations in x-y geometry with bilinear-discontinuous finite element spatial discretization, by using a bilinear-discontinuous diffusion differencing scheme for the diffusion acceleration equations. This method differed from previous methods in that it is unconditionally efficient for problems with isotropic or nearly isotropic scattering. Here, the same bilinear-discontinuous diffusion differencing scheme, and associated multilevel solution technique, is used to accelerate the x-y geometry Sn equations with linear-bilinear nodal spatial differencing. It is found that for problems with isotropic or nearly isotropic scattering, this leads to an unconditionally efficient solution method. Computational results are given that demonstrate this property.