ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
V. Rajagopal
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 218-224
Technical Paper | doi.org/10.13182/NSE62-A26060
Articles are hosted by Taylor and Francis Online.
An experimental investigation has been made of the self-fluctuations in neutron density in a nuclear reactor, and the response in neutron density for random reactivity inputs, using analog correlation techniques. The analysis of self-fluctuations was based on ion chamber measurements of the fluctuations of neutron intensity at various points. Autocorrelation analysis was then used to find the power spectrum of the fluctuations, which has the shape of square modulus of transfer function. A random reactivity input was realized by using an electromechanical system to convert the white noise of a radioactive source into linear motion of a small neutron absorber. Analysis of the response was made by autocorrelating the reactivity input and cross-correlating the reactivity input and the response in neutron density, and determining their spectra. The amplitude and phase of the reactor transfer function were determined from these spectra. Results are presented on some measurements made on a small reactor at Brookhaven National Laboratory. The measured transfer function agrees with the calculated transfer function.