The quantities of xenon taken up by type R-41 high density graphite in contact with xenon gas at 750° and 1000°C have been measured. A technique was developed whereby graphite at high temperature was equilibrated with xenon containing active tracer and the sample quenched in cold mercury to seal in the sorbed gas. It was determined that at these high temperatures there is no appreciable surface adsorption and that the major portion of the xenon in the graphite is contained in the interconnected pores. The quantity of gas held could be expressed by the ideal gas law if the void volume per gram of graphite and the partial pressure of the xenon were known. As a result of this work an explanation is offered for the high concentrations of fission xenon found (3) in graphite surfaces in contact with a neutron irradiated solution of uranium in bismuth.