The trend toward increased reliance on passive features for power reactor safety makes it important to obtain the characteristics of the reactor system from measurements on the system. A method is described for solving for the delayed neutron parameters in a liquid-metal power reactor by fitting an analytic solution of the point-kinetics equations to the flux die-away from a dropped rod in an initially critical core. The method includes treatment of those conditions found in a power reactor that depart from those in a critical assembly experiment. These include a comparatively long rod drop time and a detector signal that instead of providing an integrated count rate is a sampled data signal proportional to the instantaneous fission power. The delayed neutron parameter values calculated from a rod drop experiment in the Experimental Breeder Reactor II are in agreement with values calculated using first principles and knowledge of core material composition and nuclear cross sections.