A variational approximation is developed for general-geometry multigroup transport problems with arbitrary anisotropic scattering. The variational principle is based on a functional that approximates a reaction rate in a subdomain of the system. In principle, approximations that result from this functional “optimally”determine such reaction rates. The functional contains an arbitrary parameter α and requires the approximate solutions of a forward and an adjoint transport problem. If the basis functions for the forward and adjoint solutions are chosen to be linear functions of the angular variable , the functional yields the familiar multigroup P1 equations for all values of α. However, the boundary conditions that result from the functional depend on α. In particular, for problems with vacuum boundaries, one obtains the conventional mixed boundary condition, but with an extrapolation distance that depends continuously on α. The choice α = 0 yields a generalization of boundary conditions derived earlier by Federighi and Pomraning for a more limited class of problems. The choice α = 1 yields a generalization of boundary conditions derived previously by Davis for mono-energetic problems. Other boundary conditions are obtained by choosing different values of α. We discuss this indeterminancy of a in conjunction with numerical experiments.