ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Tomomi Uchiyama
Nuclear Science and Engineering | Volume 134 | Number 3 | March 2000 | Pages 281-292
Technical Paper | doi.org/10.13182/NSE00-A2116
Articles are hosted by Taylor and Francis Online.
The air-water two-phase flow across a staggered tube bundle at a pitch-to-diameter ratio of 1.4 is analyzed by an incompressible two-fluid model using the upstream finite element method proposed in a prior study. The Reynolds number, based on the tube diameter and the volumetric velocity of the liquid phase at the tube gap, is 41 000, and the volumetric fraction of the gas phase upstream of the bundle g0 ranges from 0 to 0.15. The calculated flows exhibit unsteady and complicated behavior irrespective of g0. The change in the drag coefficient of a tube in the bundle due to g0 agrees with the experimental result. The distribution of the volumetric fraction of the gas phase around the tube is also in good agreement with the measurement trend. These results indicate that the finite element method is usefully applicable to the two-phase-flow analysis in staggered tube bundles. It is also clarified that the unsteady flows are attributable to the occurrence and movement of vortices of both phases around the tubes.