ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Jack M. Hochman, Charles F. Bonilla
Nuclear Science and Engineering | Volume 22 | Number 4 | August 1965 | Pages 434-442
Technical Paper | doi.org/10.13182/NSE65-A20629
Articles are hosted by Taylor and Francis Online.
The electrical resistivity of high purity liquid cesium was determined in a pressurized furnace from 600 to 3000°F (316 to 1649°C) by measurements of the electrical resistance of a Ta-10%W alloy tube, both empty and filled with cesium. The resistivity found for the lower temperatures agrees moderately well with previously published results, the discrepancy decreasing at the highest temperatures. The thermal conductivity of liquid cesium was calculated from its resistivity using a Lorenz number of 2.3 × 10−8 (V/deg K)2. By comparing the cesium data with a reduced resistivity vs reduced temperature curve for mercury, the critical temperature of cesium is found to be 3190 °F (1754 °C), with a corresponding critical pressure of 130.8 atm from an available vapor-pressure correlation.