ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
S. R. Bierman, K. L. Garlid and R. W. Albrecht
Nuclear Science and Engineering | Volume 22 | Number 2 | June 1965 | Pages 206-214
Technical Paper | doi.org/10.13182/NSE65-A20239
Articles are hosted by Taylor and Francis Online.
The complementary nature of pulsed-neutron and reactor-noise techniques in the investigation of reactor dynamic parameters is illuminated by considering the response of a reactor to two types of forcing functions. One of these forcing functions is the impulse function employed in pulsed-neutron studies, while the other is derivable from the inherent randomness of the nuclear events taking place in the reactor. Both the prompt-neutron density following a burst of neutrons into a reactor system and the spectral density of the reactor noise can be expressed in terms of the prompt-neutron decay constant, α. This, in turn, is related to the ratio β/ℓ and the reactivity of the system. Either technique can be used to measure α; however, in practice, each is limited according to a ‘figure of merit’ for a given experimental situation. Measurements made on both subcritical and critical assemblies in the Critical Mass Laboratory at Hanford illustrate the complementary feature of these two techniques and their usefulness in verifying each other's experimental results.