For single-core reflected neutronic systems, generalized neutron generation time is derived and given physical interpretations in terms of importance. A system kinetic equation containing the moderator region response function previously introduced is reduced by a slow-variation approximation to the form of a conventional one-point kinetic equation, in which a parameter can be identified as generalized neutron generation time by analogy with a bare system. In such a mathematical expression for the parameter, one can further identify the amount of increase due to reflection over the bare system generation time. This amount is found to be the reflection time multiplied by the number of migrations that neutrons undergo between reflector and core in one generation. The theoretical generation time of the SHE assembly, a thermal-energy, graphite-moderated critical assembly, calculated by such a formulation with cylindrical geometry, agreed well with that from pulsed neutron experiments.