ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Jesson D. Hutchinson, John D. Bess
Nuclear Science and Engineering | Volume 163 | Number 3 | November 2009 | Pages 285-290
Technical Paper | doi.org/10.13182/NSE163-285
Articles are hosted by Taylor and Francis Online.
Subcritical measurements were conducted with an -phase plutonium sphere reflected by nickel hemishells using the 252Cf source-driven noise analysis method to provide criticality safety benchmark data. Measured configurations included a bare plutonium sphere as well as the plutonium sphere reflected by the following nickel thicknesses: 1.27, 2.54, 3.81, 5.08, and 7.62 cm. A certain ratio of spectral quantities was measured for each configuration, which varies linearly with the keff of the system under small perturbations. In addition, two types of Monte Carlo calculations were employed: a modified version of MCNP to calculate the ratio of spectral quantities and a KCODE calculation. From the measured and computed quantities, the effective multiplication factor of each configuration can be approximated. The inferred keff for all six configurations compared well with computed values. A comprehensive uncertainty analysis was then performed that includes uncertainties in the geometry and materials present in the system in addition to the uncertainties in the method and nuclear data.