ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
W. R. Marcum, B. G. Woods, M. R. Hartman, S. R. Reese, T. S. Palmer, S. T. Keller
Nuclear Science and Engineering | Volume 162 | Number 3 | July 2009 | Pages 261-274
Technical Paper | doi.org/10.13182/NSE08-63
Articles are hosted by Taylor and Francis Online.
Oregon State University has recently conducted a complete core conversion analysis as part of the Reduced Enrichment for Research and Test Reactors Program. The goals of the thermal-hydraulic steady-state analysis were to calculate natural-circulation flow rates, coolant temperatures, and fuel temperatures as a function of core power, as well as peak values of fuel temperature, cladding temperature, surface heat flux, critical heat flux ratio, and temperature profiles in the hot channel for both the highly enriched uranium and low-enriched uranium cores.RELAP5-3D Version 2.4.2 was used for all computational modeling during the thermal-hydraulic analysis. This is a lumped parameter code forcing engineering assumptions to be made during the analysis. A single-hot-channel model's results are compared to results produced from more refined two- and eight-channel models in order to identify variations in thermal-hydraulic characteristics as a function of spatial refinement.