ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
R. S. Keshavamurthy, R. S. Geetha
Nuclear Science and Engineering | Volume 162 | Number 2 | June 2009 | Pages 192-199
Technical Note | doi.org/10.13182/NSE162-192
Articles are hosted by Taylor and Francis Online.
Steffensen's inequality is used to obtain new properties of nuclear Doppler broadening functions. We apply the inequality on subinterval integrals of these functions to obtain bounds that provide new approximations for the Doppler broadening functions. The Taylor series is used to further simplify the analytic approximations for the bounds to sums of terms of elementary transcendental functions. The approximations for bounds are able to reproduce the functions with any desired decimal place accuracy. The average of the lower and upper bounds provide better approximations to achieve the same level of decimal place accuracy and are much more efficient computationally. The method is capable of computing the functions to arbitrary accuracy as the inequality essentially gives the bounds of the functions.