ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Kirill Fedorovich Raskach
Nuclear Science and Engineering | Volume 162 | Number 2 | June 2009 | Pages 158-166
Technical Paper | doi.org/10.13182/NSE162-158
Articles are hosted by Taylor and Francis Online.
This paper deals with the well-known problem of calculating derivatives and perturbations of the multiplication factor and reaction rates by the Monte Carlo method. The central point of the problem is the fact that the fission source spatial distribution depends on the solution of the neutron transport equation. Thus, whatever perturbation of material or geometrical parameters happens, it will lead to a perturbation of the fission source spatial distribution. Ignoring this can cause significant errors. There have been proposed several techniques to consider the aforementioned fact. This paper presents another possible solution.