ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Juan José Ortiz, Alejandro Castillo, José Luis Montes, Raúl Perusquía, José Luis Hernández
Nuclear Science and Engineering | Volume 162 | Number 2 | June 2009 | Pages 148-157
Technical Paper | doi.org/10.13182/NSE162-148
Articles are hosted by Taylor and Francis Online.
RENO-CC, a system to optimize nuclear fuel lattices for boiling water reactors using a multistate recurrent neural network, is shown. This kind of neural network is formed by only one layer of neurons. Each neuron is associated with a pin of the fuel lattice array. RENO-CC was tested through the fuel lattice design of 10 × 10 arrays with two water channels. Thus, the neural network has a total of 51 neurons; four neurons are associated with the channels (they correspond to a half fuel lattice). The neuron's outputs are known as the neural states. The RENO-CC's neural network works by changing the neural states in order to decrease or increase the value of an objective function. Neural states are chosen from an inventory of pins with different 235U enrichment and gadolinia concentrations. The objective function includes both the local power peaking factor and the infinite multiplication factor. These parameters are calculated with the HELIOS code. A fuzzy logic system is applied in order to decide if the designed fuel lattice is suitable to be evaluated by a three-dimensional reactor core simulator. To carry out the assessment, the fuel lattices with the best fuzzy qualification are placed at the bottom zone of a predesigned fuel assembly and predesigned fuel loading and control rod patterns. Fuel lattice performance is verified with the Core Master PRESTO core simulator. According to the obtained results, RENO-CC could be considered as a powerful tool to design fuel lattices. The system was programmed with Fortran 77 using a UNIX interface in an Alpha workstation.