ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Y. S. Rana, S. B. Degweker
Nuclear Science and Engineering | Volume 162 | Number 2 | June 2009 | Pages 117-133
Technical Papers | doi.org/10.13182/NSE08-13
Articles are hosted by Taylor and Francis Online.
In our earlier papers, we developed a theory of reactor noise for accelerator-driven systems (ADSs). It was shown that reactor noise in ADSs is different from that in critical or radioactive source-driven subcritical systems because of the periodically pulsed source and its non-Poisson character. Various noise descriptors, such as Rossi alpha, Feynman alpha (or variance to mean), power spectral density, and cross-power spectral density, were derived, for a periodically pulsed source, including correlation between different pulses and finite pulses of different shapes. Throughout the work we restricted ourselves to the case of prompt neutrons only. In the present paper, we extend the theory to the delayed neutron case. Feynman-alpha and Rossi-alpha formulas are derived by considering the source to be a periodically pulsed non-Poisson source, without correlations between different pulses. Each pulse is assumed to be a delta function. The calculations are carried out in the time domain that leads to closed-form expressions for these descriptors.