ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
David J. Kropaczek, Ryan Walden
Nuclear Science and Engineering | Volume 193 | Number 5 | May 2019 | Pages 506-522
Technical Paper | doi.org/10.1080/00295639.2018.1554173
Articles are hosted by Taylor and Francis Online.
A method is developed, assessed, and demonstrated for addressing objective functions and constraints within the context of combinatorial optimization problems. The penalty-free method developed, referred to as constraint annealing, eliminates the use of traditional constraint penalty factors by treating the objective functions and constraints as separate and concurrently solved minimization problems within a global optimization search framework. The basis of the constraint annealing algorithm is a highly scalable method based on the method of parallel simulated annealing with mixing of states. Unique to constraint annealing is a novel approach that employs both global solution acceptance and local objective function and constraint statistics in the calculation of adaptive cooling temperatures that are specific to each objective function and constraint. The constraint annealing method is assessed against a traditional penalty-factor approach for a realistic core loading pattern design problem and shown to be robust with respect to elimination of arbitrary weighting factors on constraint values. In addition, the constraint annealing method is demonstrated to be robust with respect to parallel scaling as well as improved optimization performance on high-performance-computing systems.