ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Maria Hendrina Du Toit, Vishana Vivian Naicker
Nuclear Science and Engineering | Volume 191 | Number 3 | September 2018 | Pages 291-304
Computer Code Abstract | doi.org/10.1080/00295639.2018.1468153
Articles are hosted by Taylor and Francis Online.
The European pressurized reactor (EPR) is classified as a Generation III+ reactor. It differs from a conventional pressurized water reactor in many aspects, one of which is the core design. This evolutionary reactor lends itself to new fuel designs, such as thorium-based fuels. To perform new design calculations, a base case model needs to be established because the detailed models that are currently available are either proprietary or regulated. This paper therefore presents such a model based on the Monte Carlo method. This method is a valuable component of reactor neutronic calculations because geometry and materials can be accurately modeled.
We modeled a full core of the EPR using MCNP6, in which the individual fuel pin geometry and material definitions were used together with radial and axial temperature characterization based on fuel assemblies considered as nodes. Data for both the neutronic and thermal-hydraulic models were mainly obtained from the U.S. EPR Final Safety Analysis Report (FSAR) [Rev. 5, AREVA (2013)].
The neutronic and some thermal-hydraulic results were compared with data from the EPR FSAR. The following core neutronic parameters compared well with the FSAR data: the boron worth, axial flux distribution, neutron flux spectrum, reactivity coefficients, and control rod worth. However, the delayed neutron fraction showed a somewhat larger difference compared to the FSAR. Given this verification with the FSAR, confidence in the MCNP6 EPR model was therefore established. The model that we have developed serves as the basis for the follow-on study of introducing thorium in the EPR core.