ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Indrajeet Singh, Anurag Gupta, Umasankari Kannan
Nuclear Science and Engineering | Volume 191 | Number 2 | August 2018 | Pages 161-177
Technical Note | doi.org/10.1080/00295639.2018.1463745
Articles are hosted by Taylor and Francis Online.
A combination of the neutronics features of gas-cooled high-temperature reactors by using the fuel in the form of ceramic-coated particles, called tristructural-isotropic, and the heat removal feature of molten salt reactors by using molten salt as a coolant is an attractive option in designing a reactor with a high-power density operation without compromising the safety aspects. Neutronics feasibility of such a combination of the molten salt (LiF-BeF2) as a coolant and thorium-based fuel, in particular (Th-233U)O2, in a graphite-moderated system is investigated. This technical note presents the influence of the heavy metal (HM) loading on neutronics features of a pebble lattice cell, that is, infinite multiplication factor (K-inf), temperature coefficients of reactivity (TCR), the void reactivity coefficient, etc. In addition, enriched uranium fuel has also been studied just to make a comparison with thorium-based fuel. Furthermore, the minimum HM loading of fuel per pebble that is needed to achieve negative coolant-temperature reactivity coefficients and void reactivity coefficients has been estimated for molten salt coolant.
The analyses show that Th2/U3 fuel gives a less negative fuel temperature reactivity coefficient as compared with that of uranium-based fuel. This study also shows that all the TCR of both fuel types improve, becoming less positive or more negative, by increasing HM loading per pebble. Further, the burnup dependence of K-inf and the reactivity coefficients are studied for limiting HM loadings, e.g., 30 g per pebble. The change in the spectrum and the four-factor formula are used to explain the behavior of the reactivity coefficients as a function of HM loading and burnup.