ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Patrick Jaffke
Nuclear Science and Engineering | Volume 190 | Number 3 | June 2018 | Pages 258-270
Technical Paper | doi.org/10.1080/00295639.2018.1429173
Articles are hosted by Taylor and Francis Online.
We present a self-consistency analysis of fission product yield evaluations. Anomalous yields are determined using a series of simple conservation checks and comparing charge distributions with common parameterizations. The summed average prompt neutron multiplicity for both products as a function of the heavy product mass is derived directly from the independent fission product yields with a procedure utilizing average charge conservation. This procedure is validated with Monte Carlo simulations of the de-excitation of the fission fragments in a Hauser-Feshbach statistical decay framework. The derived is compared with experimental data, when available, and then used to determine the prompt neutron multiplicity for the various evaluations. The propagated errors on from the average charge conservation method are significantly lower than the simple summation rules, which reveals that some evaluations are inconsistent with prompt neutron data. We propose possible solutions to remedy the observed inconsistencies and identify sources of the observed differences in between the various evaluation libraries.