ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Shi-Xiang Qu, Yan-Hua Wu, Zhao-Zhong He, Kun Chen
Nuclear Science and Engineering | Volume 189 | Number 3 | March 2018 | Pages 282-289
Technical Paper | doi.org/10.1080/00295639.2017.1405652
Articles are hosted by Taylor and Francis Online.
The vortex diode is a key candidate for the equipment of the passive safety system of the molten salt reactor. Experimental studies to determine the diodicity (ratio of reverse flow Euler number to the forward flow Euler number at the same Reynolds number) using high-temperature molten salt are strongly limited because of the huge technical effort and financial requirements for such studies; moreover, possible solutions that involve a scaling method that uses surrogate fluid to obtain the diodicity must be validated. To determine the diodicity and verify the scaling method, an experiment using one kind of heat transfer oil (Dowtherm-a) as the surrogate fluid was carried out. In addition, a computational fluid dynamics (CFD) simulation method was also adopted to study the flow characteristics in the vortex diode using three different fluids. The results show the following: it is feasible to study the diodicity of a vortex diode by a scaling experimental method using surrogate fluid, the CFD simulation method established in this paper can be applied to study the diodicity of the vortex diode, and the structure of the flow field and velocity distribution in the vortex chamber for reverse flow are independent of fluids and only related to the Reynolds number.